Paintistanbul & Turkcoat Congress 05-06 December 2023

Development of conductive assistant slurry for lithiumion batteries based on coating technologies

Kansai Paint Co.,Ltd.

Corporate Research and Development Research and Development Division

Atsunao HIWARA Chihiro NAGANO

Ambidexterity strategy in KANSAI paint

Exploitation

New function

Existing business (paint)

Conventional function

Alternative to low-cost materials

Expansion of procurement options

Simplification of manufacturing

Long-term product stability

Reduction of VOC emissions

Removal of hazardous materials

Defensive

Exploration

New business

Offensive

Core technologies and challenges of new business

Potential entry opportunities in LIB industry

Customer

CAGR=roughly 15-20% through 2030 according to Market researchers' estimates

- □ Rapid market growth
- □ Insatiable technological evolution
- □ Various functional coating possibilities

Company

e.g. Pigment dispersion or Coating workability improvement

- □ Affinity with core technologies of paint industry
- □ Sales channels to automobile/parts manufacturers

Competitor

e.g. Inks, Adhesives field

- Approaches from other industries with similar technologies
- □ In-house development by battery manufacturers

LIB cathode manufacturing process

Cathode manufacturing process

CC paste : Conductive carbon paste

Ideal dispersing state for conductive carbon black

Insufficient dispersing

Carbon aggregated

= hard for electron to move

Ideal dispersing

Carbon chained

= easy for electron to move

Problems of CC paste with insufficient dispersing

CC paste : Conductive carbon paste

Insufficient dispersing

- 1. Carbon caking in CC paste
- 2. Thickening of CC paste
- 3. Filtration trouble of CC paste
- 4. Defects on cathode film
- 5. Poor battery performance

Caking

Thickening

Film defect (e.g. hole)

Importance of dispersion control for carbon

Insufficient dispersing

Ideal dispersing

Excess dispersing

Good battery performance

Development of suitable conductive carbon paste

Affinity of functional groups for graphite

Interaction energy of functional groups onto graphite

Calculation basis set : $\omega B97X-D/6-31G(d)$

Dispersant with aroma-ring and CC paste viscosity

CC: Conductive carbon

Affinity of functional groups for graphite

Interaction energy of functional groups onto graphite

Calculation basis set : $\omega B97X-D/6-31G(d)$

Interaction energy of OH and graphite surface

calculation basis set : $\omega B97X-D/6-31G(d)$

OH orbital interacted to pi orbital on graphite surface

DPD calculation of Ethanol's state in NMP on graphite

Dissipative particle dynamics(DPD) for minimum functional unit. CH3CH2-OH

: not displayed

Ethanol: adsorption onto graphite < thermal diffusion into NMP

http://octa.com

DPD calculation of PVA's state in NMP on graphite

Dissipative particle dynamics(DPD) for polymer unit. PVA(with -OH)

Purple: -OCOCH3

: not displayed

$$\begin{pmatrix}
-CH_2-CH_2-\\
I\\
OCOCH_3
\end{pmatrix}_{\mathbf{m}}
\begin{pmatrix}
-CH_2-CH_2-\\
I\\
OH
\end{pmatrix}_{\mathbf{n}}
m=30 \text{ n=70}$$

Initial time progression (Calculation steps) ue :-CH₂-CH₂ed :-OH

http://octa.com

PVA polymer: adsorption onto graphite > thermal diffusion into NMP

DPD calculation of PVA's state in NMP on graphite

Dissipative particle dynamics(DPD) for polymer unit. PVA(with -OH)

NMP: not displayed

Graphite Conductive carbon surface

Dispersant with -OH and CC paste viscosity

Combination of suitable dispersant and paste viscosity

Amount of dispersant in CC paste and performance

Insufficient dispersing

- □ Over dispersing
- Excessive addition of insulating dispersant

Optimization of dispersion process

Dispersion progression of CC paste and performance

short

Dispersing time

Carbon isolation
Disconnection of
conductive paths

Conclusion

KANSAI paint realized new conductive carbon paste for LIB cathode coating

- by exploring suitable dispersants based on computational analysis
- by adjusting appropriate dispersing level

Future scenario of KANSAI's battery business

2020 2021 2022 2024 2030

Acetylene carbon black (in NMP)

for HEV cathode

Smaller size

Carbon nanotube (in NMP)

for next gen. cathode

MW-CNT

SW-CNT

Feasibility study

Carbon nanotube (in non-polar solvent)

Affinity of functional groups vs NMP for graphite

1. What is a good functional group for dispersing

Formulation

design

芳香環構造だけでなく、PVAも相互作用により吸着・分散効果があることがわかった。

1. Optimizing the dispersing process

KANSAI has various dispersing methods

Why dose the OH group interact carbon surface?

DPDシミュレーションで検討