





# EVALUATION OF ELECTROCHEMICAL AND STRUCTURAL PROPERTIES OF POLYURETHANE COATING ON STEEL SURFACES FOR CORROSION RESISTANCE

SEMA AYVAZ ŞAHİN

SUPERVISOR: PROF. DR. BİKEM ÖVEZ

## **AIM**

- Investigation of corrosion additives that can be alternatives to zinc phosphate in terms of corrosion resistance in polyurethane paints.
- Examined corrosion additives:
- Inhibisphere A
- Inhibisphere ZS
- Cerium octoate







## **POLYURETHANE**

- Polyurethane (PU) is one of the largest polymer products in the plastic family.
- From a chemical perspective, the main components of PU are macro-diol (functional group: OH) and polyisocyanate (functional group: NCO).
- These two functional groups form extended chains and networks bonded by urethane link which is formed as a result of exothermic reaction.
- Polyurethane was patented by Otto Bayer in 1937.









## POLYURETHANE TYPES AND APPLICATIONS

### **Table 1: Types and applications of polyurethane**



#### **POLYURETHANES**

Thermoplastic PU

Flexible PU

**Rigid PU** 

**Examples:** 

insulators

Thermal and

PUI

Water-borne

PU

ionomers)

(Polyurethane

**Examples: Artificial Examples:** hearts, connector Adhesives,

tubing for heart sealants,







goods, bedding, parts, biomedicine and nanocomposites











## **CORROSION MECHANISM AT STEEL SURFACES**

- Corrosion is the process that a material deterioration as a result of electrochemical and chemical reactions with its environment.
- It is an important problem that must be prevented as it can cause decoration failure, material losses and significant economic losses.







## **CORROSION MECHANISM AT STEEL SURFACES**



Figure 1: Corrosion mechanism of steel surfaces



Anodic reaction: Fe  $\rightarrow$  Fe<sup>+2</sup> + 2e<sup>-2</sup>

Cathodic reaction:  $O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$ 







## POLYURETHANE COATINGS

- Coatings are one of the most important methods for metallic materials to protect against corrosion.
- Polyurethane coatings are considered to act as barriers by trying to prevent the passage of oxygen, water and ions between the surface and the environment.

Figure 2: The synthesis reaction of a typical PU







## **CONTENTS OF POLYURETHANE COATING**

### **Component A of PU Coating**

#### **Acrylic Polyol**



### **Component B of PU Coating**











## POLYURETHANE COATING PREPARATION



## PREPARED POLYURETHANE COATING PROPERTIES

**Table 2: Prepared polyurethane coating properties** 

| NCO:OH<br>RATIO | PVC<br>VALUE<br>(%) | DRY FILM THICKNESS OF POLYURETHANE COATINGS | ADDITIVES       | PROPERTIES<br>OF ADDITIVES                                   | PARTICLESIZE<br>(μ) | WEIGHT PERCENTAGE OF ADDITIVES (% wt) |
|-----------------|---------------------|---------------------------------------------|-----------------|--------------------------------------------------------------|---------------------|---------------------------------------|
|                 |                     |                                             | Zinc phosphate  | Zn <sub>3</sub> (PO <sub>4</sub> ) <sub>2</sub>              | 2-3.5               | 1.88                                  |
|                 |                     |                                             | Inhibisphere-A  | organosilica                                                 | 0.3-0.6             | 1.88                                  |
| 1.1             | 35                  | 50-60 μ                                     | Inhibisphere-ZS | pure silica                                                  | 20-40               | 1.89                                  |
|                 |                     |                                             | Cerium octoate  | C <sub>24</sub> H <sub>45</sub> CeO <sub>6</sub><br>(liquid) | -                   | 1.87                                  |
|                 |                     |                                             | No additive     | Reference panel                                              | -                   | -                                     |







## **ANALYSIS AND USED STANDARDS**

Polyurethane coatings analysis are in the table below.

**Table 3: Analysis and used standards** 

| ANALYSIS NAME                                   | USED STANDARD                                                                                                       | ANALYSIS TIME     |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------|
| Neutral Salt Spray Test                         | ISO 9227 NSS                                                                                                        | For 21 Days       |
| Electrochemical Impedance<br>Spectroscopy Tests | Nyquist and Bode Plots, Linear<br>Polarization Resistance and<br>Potentiodynamic Polarization<br>Resistance (Tafel) | For 0 and 21 Days |
| SEM Analysis                                    | SEM/EDX                                                                                                             | -                 |
| Hardness measurements                           | ISO 1522                                                                                                            | -                 |
| <b>Chemical Resistance Tests</b>                | AWWA C222                                                                                                           | For 30 days       |







## **NEUTRAL SALT SPRAY TEST**

• Salt spray testing was carried out according to ISO 9277 NSS standard by exposing the coated panels to salt spray corrosion cabinet maintained at 35 °C, %100 RH and 0.82 bar pressure for 500 hours (concentration of salt solution: %5).









# **NEUTRAL SALT SPRAY TEST**



Figure 3: Panel's photograps after 500 hours corrosion test







**Table 4: Corrosion test results for 500 hours** 

| Corrosion test time | Evaluation<br>Standard                            | No<br>additive<br>Dry film<br>thickness: | Containing zinc phosphate Dry film thickness: | Containing inhibisphere A  Dry film thickness: | Containing inhibisphere ZS Dry film thickness: | Containing cerium octoate  Dry film thickness: |
|---------------------|---------------------------------------------------|------------------------------------------|-----------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|
|                     |                                                   | 50-60μ                                   | 50-60μ                                        | 50-60μ                                         | 50-60μ                                         | 50-60μ                                         |
|                     | Blister<br>(ISO 4628-2)                           | No 4 Few,<br>No 6 Few                    | No 8 Few                                      | No 8 Few                                       | No 8 Dense                                     | No 4 Medium,<br>No 6 Few                       |
| 500 hours           | Surface rust<br>(ISO 4628-3)                      | Ri O                                     | Ri O                                          | Ri O                                           | Ri O                                           | Ri 1                                           |
|                     | Scribed line<br>corrosion<br>(mm)<br>(ISO 4628-8) | 6                                        | 5                                             | 3                                              | 9                                              | 6                                              |
|                     | Delamination<br>(mm)<br>(ISO 4628-8)              | 7                                        | 4                                             | 4                                              | 15                                             | 6                                              |







## **ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY TEST**

- Electrochemical impedance is usually measured by applying an AC potential to an electrochemical cell and then measuring the current through the cell.
- Impedance measurements were performed using 3 different techniques.
- Nyquist and bode plots,
- Linear polarization resistance,
- Potentiodynamic polarization (Tafel).



Figure 4: The corrosion test cell







# **Tafel Curves (Potentiodynamic Polarization)**



Figure 5 : Tafel curves

- In the Tafel extrapolation method, anodic and cathodic Tafel curves (branches) are obtained for the corroded metal.
- Extrapolation is performed by extending the linear portions of the anodic and cathodic plots back to their intersection.







# **Tafel Curves (Potentiodynamic Polarization)**



Figure 6: Tafel curves of different polyurethane coatings







# **Tafel Curves (Potentiodynamic Polarization)**

Table 5: Tafel curves of different polyurethane coatings before and after 500 hours salt spray test

| Corrosion test time   | Polyurethanes        | lcorr    | Corrosion Rate, mpy<br>(mils per year penetration) | Polarizaion<br>resistance<br>(Rp) |
|-----------------------|----------------------|----------|----------------------------------------------------|-----------------------------------|
|                       | No additive          | 278 pA   | 7.97x10 <sup>-6</sup>                              | 322.4 Mohm                        |
| Before corrosion test | With zinc phosphate  | 250 pA   | 6.2 x10 <sup>-6</sup>                              | 450.2 Mohm                        |
|                       | With inhibisphere A  | 200 pA   | 5.74 x10 <sup>-6</sup>                             | 560.8 Mohm                        |
|                       | With inhibisphere ZS | 1490 pA  | 47.76 x10 <sup>-6</sup>                            | 50.08 Mohm                        |
|                       | With cerium octoate  | 61.60 pA | 1.76 x10 <sup>-6</sup>                             | 912.4 Mohm                        |
|                       | No additive          | 59.5 μΑ  | 2.199                                              | 1.160 kohms                       |
| After 500 hours       | With zinc phosphate  | 52.10 μΑ | 1.493                                              | 1.426 kohms                       |
| corrosion test        | With inhibisphere A  | 35.2 μΑ  | 0.171                                              | 2.409 kohms                       |
|                       | With ınhibisphere ZS | 57.30 μΑ | 4.285                                              | 0.259 kohms                       |
|                       | With cerium octoate  | 146 μΑ   | 4.178                                              | 1.003 kohms                       |







## **Linear Polarization Resistance Curves**



Figure 7: LPR curves

- A linear polarization resistance (LPR) test is a corrosion rate monitoring method and it can give an indication of the corrosion resistance of materials in an aqueous environment.
- PRP reflected the coating's ability to block electrolyte penetration; the larger the Rp, the stronger the coating system's blocking effect on corrosion ions.







## **Linear Polarization Resistance Curves**

Table 6: Polarization resistance (Rp) and corrosion rate (CR, mpy) of different polyurethanes before and after 500 hours salt spray test

| Corrosion test time   | Polyurethanes        | Rp          | CR, mpy                 |
|-----------------------|----------------------|-------------|-------------------------|
|                       | No additive          | 318 Mohm    | 10.61 x10 <sup>-6</sup> |
| Before corrosion test | With zinc phosphate  | 440.7 Mohm  | 6.64 x10 <sup>-6</sup>  |
|                       | With inhibisphere A  | 545.3 Mohm  | 5.98 x10 <sup>-6</sup>  |
|                       | With inhibisphere ZS | 48.05 Mohm  | 47.87 x10 <sup>-6</sup> |
|                       | With cerium octoate  | 910.4 Mohm  | 2.177 x10 <sup>-6</sup> |
|                       | No additive          | 1.01 kohms  | 2.642                   |
| After 500 hours       | With zinc phosphate  | 1.456 kohms | 1.557                   |
| corrosion test        | With inhibisphere A  | 2.405 kohms | 0.28                    |
|                       | With inhibisphere ZS | 0.27 kohms  | 4.85                    |
|                       | With cerium octoate  | 1 kohms     | 4.66                    |

It is seen that the corrosion protection ability of Inhibisphere-ZS and Cerium octoate have the lowest value.







# **Bode and Nyquist Plots**

- There are different ways to illustrate the response of an electrochemical system to an applied AC potential or current.
- The most common plots are the Nyquist plot and Bode plots.









#### Bode plots of the polyurethanes before salt spray test



#### Bode plots of the polyurethanes after salt spray test



## Nyquist plots of the polyurethanes before salt spray test



#### Nyquist plots of the polyurethanes after 500 hours salt spray test



# **Bode and Nyquist Plots**

The goodness of fit values and EEC models of the two selected different models are as follows.

Table 7: Goodness of fit values for two selected EEC models

| EEC Models | Goodness of fit value |
|------------|-----------------------|
| MODEL 1    | 3.34x10 <sup>-2</sup> |
| MODEL 2    | 7.51x10 <sup>-6</sup> |



Figure 8: The equivalent electric circuits for MODEL 1, MODEL 2







# Pore Resistance (Rp) and Coating Resistance (Rc)

• The protection behaviors off all the coatings are discussed in terms of Rp (pore resistance) and Rc (coating resistance).

Table 8: The pore resistances (Rp) and coating resistances (Rc) for different coatings before and after 500 hours salt spray test

| Corrosion test time       | Polyurethanes        | Rp (ohm)                 | Rc (ohm)              |
|---------------------------|----------------------|--------------------------|-----------------------|
|                           | No additive          | 32.11x10 <sup>6</sup>    | 61.02x10 <sup>6</sup> |
| Before corrosion test     | With zinc phosphate  | 342.1x10 <sup>6</sup>    | 247.6x10 <sup>6</sup> |
| Defore corresion test     | With ınhibisphere A  | 473.2x10 <sup>6</sup>    | 330x10 <sup>6</sup>   |
|                           | With inhibisphere ZS | 0.084810×10 <sup>6</sup> | 1.532x10 <sup>6</sup> |
|                           | With cerium octoate  | 0.083860x10 <sup>6</sup> | 300.1x10 <sup>6</sup> |
|                           | No additive          | 120,1                    | 300.2                 |
| After 500 hours corrosion | With zinc phosphate  | 134,1                    | 385,5                 |
| test                      | With ınhibisphere A  | 611,8                    | 550.8                 |
|                           | With inhibisphere ZS | 78,89                    | 8,7                   |
| 24                        | With cerium octoate  | 147,2                    | 77,4                  |

# **SEM ANALYSIS RESULTS**



Figure 9:

| а | No additive     |
|---|-----------------|
| b | Zinc phosphate  |
| С | Inhibisphere A  |
| d | Inhibisphere ZS |
| е | Cerium octoate  |







### CHEMICAL RESISTANCE TEST

- For chemical resistance tests, the prepared film polyurethanes was completely immersed in the prepared solutions for 30 days.
- Used solutions and chemicals are as follows:
- %10 sulfuric acid (H<sub>2</sub>SO<sub>4</sub>),
- % 30 sodium chloride (NaCl),
- % 30 sodium hydroxide (NaOH)
- Diesel fuel
- After chemical resistance tests, all the PU films were affected as the loss in gloss and slight change in colour was observed against all chemical tests media (acid,alkali,nötral,diesel).





## **CHEMICAL RESISTANCE TEST**

**Table 9 : Alkali resistance test after 30 days (example)** 

| Solutions and chemicals | Polyurethanes   | Color<br>change<br>(ΔE) | Gloss loss<br>(%)<br>20° | Gloss loss (%)<br>60° | Gloss loss (%)<br>85° | Weight change percentage (last weight-initial weight / initial weight) x100) |
|-------------------------|-----------------|-------------------------|--------------------------|-----------------------|-----------------------|------------------------------------------------------------------------------|
|                         | No additive     | 0.47                    | 94.69                    | 91.80                 | 97.44                 | 2.71                                                                         |
| Sodium<br>hydroxide     | Zinc phosphate  | 1.27                    | 96.91                    | 89.24                 | 66.70                 | 2.18                                                                         |
| (NaOH)<br>( %30)        | Inhibisphere-A  | 0.84                    | 69.09                    | 46.97                 | 14.78                 | 0.81                                                                         |
|                         | Inhibisphere-ZS | 0.27                    | 86.47                    | 60.94                 | 32.63                 | 0.002                                                                        |
|                         | Cerium octoate  | 0.14                    | 86.93                    | 50.11                 | 21.21                 | -0.55                                                                        |

<sup>\*\*</sup>As an example, only coating resistances in alkaline media are shown.







## **HARDNESS TEST**

Persoz hardness values of five different polyurethane coatings are shown in table below.

**Table 10: Pendulum hardness test results** 

| Polyurethanes   | Pendulum<br>hardness |  |  |
|-----------------|----------------------|--|--|
|                 | (Persoz)             |  |  |
| No additive     | 118                  |  |  |
| Zinc phosphate  | 128                  |  |  |
| Inhibisphere-A  | 191                  |  |  |
| Cerium octoate  | 194                  |  |  |
| Inhibisphere-ZS | 216                  |  |  |







## CONCLUSION

According to the 500 hours neutral salt spray results, the order of corrosion performance behavior is as follows:

Inhibisphere-A>Zinc phosphate>No additive>Cerium octoate>Inhibisphere-ZS

The corrosion rates in miles per year by the Tafel method is as follows:

Inhibisphere-A (0,171 mpy) < Zinc phosphate (1,493 mpy) < No additive (2,199 mpy) < Cerium octoate (4,178 mpy) < Inhibisphere-ZS (4,285 mpy)

- As can be seen the chemical test results, the resistance of PU in alkali media (NaOH) was better gloss loss and weight differences than the other tested media (NaCl, H<sub>2</sub>SO<sub>4</sub>, Diesel fuel) due to the more urethane segments in their structures.
- The maximum persoz hardness value was found as 216 persoz (Containing Inhibisphere ZS). The variation of hardness values is as follows:

Inhibisphere-ZS>Cerium octoate>Inhibisphere-A>Zinc phosphate>No additive











