

Uğur Yenier
Bultarda Türkiye
ugury@bultarda.com

Why AI?

- Efficiency and Productivity
- Cost Reduction
- Data Analysis and Insights
- Predictive Maintenance
- Quality Control
- Innovation and Product Development
- Supply Chain Optimization
- Risk Management
- Regulatory Compliance

Challenges

- Data Quality and Availability
- Ethical Considerations
- Lack of Skilled Workforce
- Integration with Existing Systems
- Security Concerns
- Computational Power
- Initial Investment

Al 101 Model

 Machine learning model is a computer program that learns patterns from data and makes predictions or decisions without being explicitly

programmed for the task.

- Data Input
- Learning Patterns
- Training
- Prediction/Decision

AI 101

Overfitting Problem

- Model learns not only the underlying patterns in the training data but also captures the noise and random fluctuations present in that data
 - High Training Accuracy, Poor Generalization
 - Complex Models
 - Memorization vs. Generalization
 - Sensitivity to Training Data
 - Risk of Poor Performance on New Data

Blade

Typical High Speed Dispersion

- Intermediary pigment concentration
- (r)Resin + (p)Pigment + (s) Solvent
- 2+ A/C motors
- 2+ independent agitators
- Additional sensors

Why High Speed Dispersion?

• High speed dispersion is one of the most common process in any paint

& coating production

High energy consumption

- Intermediary for multiple coatings
- Minimal ingredients
- High batch count per formulation

Modelling Dispersion

There are significant sources of noise and random fluctuations in a

typical dispersion process

- Differences in feed patterns
- Changes in raw materials
- Influence of ambient factors
- Changes in equipment behavior
- Unpredictable human behavior

Overfitting Problem (single feature)

Modelling Dispersion

• Even though looks random to the human eye, AI model is able to

isolate patterns vs noise

- Motor input vs output
- Temperature
- Formulation card
- Additional sensors
- User interaction

Noise Reduction (single feature)

Modelling Dispersion

Pattern Recognition (single feature)

- Once the noise is reduced pattern recognition is run every second
 - System is already trained with results
 - 30 50 per formulation
 - 20+ typical process patterns
 - 30+ typical process errors

Modelling Dispersion

- Correlation of features
 - Power
 - Torque
 - Speed
 - Shear force
 - Capasitive feedback
 - Temperature

How is it done?

- Thermodynamics
 - 0th equilibrium
 - 1st conservation of energy
 - 2nd maximization of entropy
- Fluid Dynamics
 - Continuity equation
 - Conservation of momentum
 - Energy equation

Results

Confidence Matrix

- Difference confidence in detection of incorrect vs correct paterns
 - Detecting anomalies is priority
 - Possible after a few minutes
 - Raw material issues
 - Agitation related issues
 - Equipment failure
 - Sequence / feeding speed issues

	f1-score	support
0	0.72	8
1	0.82	18
weighted average	0.80	26

Results Real life runs

Early detection of anomalies!

Results

- Low hanging fruits
 - Batch time reduction & lower energy consumption
 - Immediate detection of mis-fed ingredient
 - Immediate detection of unexpected agitator behaviour
 - Waste reduction

- Current status
 - Confidence up to %80
 - Up to %40 reduction on dispersion cycles
 - Early detection of mis-fed ingredients

Next Steps

- What is possible
 - Create global fingerprints for standard formulations
 - Reduced energy consumption, waste, cycle times
 - Site / equipment benchmarking, optimization
 - Full automation!
- Next goals
 - Increase confidence to %90+, improve model
 - Pilot to scale up QC
 - Preventive maintanence
 - Site / Equipment comparison

