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o Gray/Green Chemistry

o Strategies in Green Conversion
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Talk Plan/Outline

o Gray/Green Chemistry
o Strategies in Green Conversion

o Hyper-branched Polymers
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Talk Plan/Outline

Gray/Green Chemistry
Strategies in Green Conversion

O
O
o Hyper-branched Polymers
O
b

Synthetic details of Hyper-branched Polymers
ased dispersion agents
o Green catalyst for Polyesters
o Natural Feedstocks of Polyesters
o Near Future Projections
o Road Map for 100% Green Product
o Conclusive Remarks
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to Green Conversion s

Green  Chemistry:  Conducting  Gray Chemisiry is the current
chemical reactions and processes  practice in which oil based

via  natural products without reactants and solvents are
hazardous solvents and by involved for production.

products at room temperature

Current  BE0L/

3 years
50%
D years

90%

Green Transformation Plan: Starting point is 10% with current settings, in 36 months our commitment is 50% and
following in 24 months 90% green transformation is projected
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Hyper-Branched Polymer based Dispersion Agent

Detailed discussion of hyper-branched polymer based dispersion
agent were presented in ....

As highlighted polyester as well as viscosity modifying units are
necessary.

Macromol. Symp. 187, 683—693 (2002) 683

Hyperbranched Polymers as a Novel Class of Pigment

Dispersants

F.OH. Pirrung, EM. Loen and A. Noordam™

EFKA Additives B.V., Innovatielaan 11, 8466 SN Nijechaske, The Netherlands




PEI-Core

Hyper-Branched Polymer based Dispersion Agent

o Core of the dispersion
agent is hyper-branched

NH2 Polyethyleneimine of
NH2 NH/ Mw: 2000 g/mol.
— o Itis aring opening of
— {\’NwHNN\”N\\/\HN}m product of Aziridine.
HN_\_ o PElyyg Is colorless, liquid
NH2 NH2 - reactant containing 60%

reactive amine.

PEI hyper branched polymers is 7.5 % of the end product

densurf
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¥ |s Green Functionalization Possible ?
Hyper-Branched PEI with Polyester arms

o Reactive amines
used as initiator of

O . .
|| ring opening
+ O’ Tin catalyst reaction of cyclic
—
ester monomers
e-Caprolactone o Conventional
method suggest
use of “Ting
catalyst.

Green Chemistry: Conventional rxn carried out at 110-130 °C and yield 98 %




|Is Green Functionalization Possible ?

Hyper-Branched PEI with Polyester arms |
o Instead conventional

method we suggest
use of acid catalyst.
Organo Lactic Acid, Glycolic
catalyst Acid, Tartaric Acid,
Citric  Acid have
g-Caprolactone been employed
\ﬁo Py

H'D\/u\ﬂﬂ

Lactic Acid Glycolic Acid Tartaric Acid

OH O OH

Green Chemistry: Organo catalyst rxn carried out at 85 °C and yield 95 %
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g-Caprolactone

Tin
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Tin  catalyzed rxn
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Mass spectrum of PEI-PCL (Tin Catalyzed Rxn.)
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Mass spectrum of PEI-PCL (Lactic Acid Catalyzed Rxn.)
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Molecular Weight of LA. Catalyzed ROP

i | o LA catalyzed  rxn
0 Lactic oo :
. O Acid exhibits Gaussian type
—p .
polydisperse molecular
g-Caprolactone weight.(1500-3300 Da)
1200 1500 1800 2100 2400 2700 3000 3300 2140 2160 2160 2200 2220 2240 2260 2260 2300 2320 2340 2360 2380 2400
m/z m/z




Molecular Weight of GA. Catalyzed ROP
(If ool o GA catalyzed rxn
O exhibits irregular type
* O - polydisperse molecular
e-Caprolactone weight.(2000-7700 Da)
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Mass spectrum of PEI-PCL (Glycolic acid Catalyzed Rxn.) ensurf.//




OP

o TA. catalyzed rxn exhibits

O
| |
0 distorted Gaussian type
+ —p :
polydisperse  molecular

e-Caprolactone weight.(1000-5000 Da)
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Molecular Weight of CA. Catalyzed F

OP

o CA. catalyzed rxn exhibits

pul NV

. O’ CA perfect Gaussian type
catalys polydisperse molecular
e-Caprolactone weight.(2700-5000 Da)
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% Tin vs. Acid Catalyzed ROP
Gray to Green Conversion By employing organic acid
0.5 Y% Gray-Green

conversion provided. NOT

S;gaélln; ENOUGH... Looking from

=, birght  side:  Reaction
e-Caprolactone temperature reduced from
110 to 85 °C that generate

energy saving up to 10 %.

85.0%
_ 85.0%

15.0%

Green Chemistry: Organo catalyst rxn carried out at 85 °C and yield 95 %
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Ring Opening Polymerization with
Natural Cyclic Esters

o Linear, cyclic, aromatic natural esters have been heavily employed
over the years
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Green Chemistry: Natrual esters can improve Gray-Green up to 30%
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Cyclic Esters Conversion

Helena Quilter et al., Polym. Chem., 2017,8, 833-837 (DOI: https://doi.org/10.1039/C6PY02033))

Ring Opening Polymerization with Natural

o Natural cylic ester

have been used by
Quilter et al. Zinc
catalyzed conversion
were suggested to
provide 90-95 %
polymerization.

densurfy
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Ring Opening Polymerization with Natural
Cyclic Esters Conversion

o P—pinene cyclic ester

0 have been replaced
&j catalyst % with ¢ caprolactone to
TN — and similar protocol
" have been utilized .
| o Polymerization yield is
P-pinene 85%...

Helena Quilter et al., Polym. Chem., 2017,8, 833-837 (DOI: https://doi.org/10.1039/C6PY02033))

densurfy
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Ring Opening Polymerization with Natural
Cyclic Esters Conversion

0
|

Q catalyst
—p

B-pinene
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Molecular Weight of PEI-Poly B— Pinene

C||) CA o CA. catalyzed p-pinene

O’ catalyst exhibits non-Gaussian type

A — polydisperse molecular
~ '\ P-pinene weight.(1100-3300 Da)
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Mass spectrum of PEI-poly B—pinene (Citric Acid Catalyzed Rxn.)
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Multi Angular Dynamic Light Scattering of PEI-poly B—pinene (Citric Acid Catalyzed Rxn.)
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Atomic Force Microscopy analysis of PEI-poly f—pinene (Citric Acid Catalyzed Rxn.)
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CA
catalyst
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/<B—pinene

o Monomer Conversion of
CA. catalyzed B-pinene

Structural Analysis of PEI-Poly B— Pinene
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Structural Analysis of PEI-Poly B— Pinene
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Intensity Profile of Sol&Gel
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Accounts

Gel Formation Analyses by Dynamic Light Scattering

Mitsuhiro Shibayama™ and Tomohisa Norisuye’

Neutron Scattering Laboratory, Institute for Solid State Physics, The University of Tokyo, Tokai, Ibaraki 319-1106

‘fDepartment of Polymer Science and Engineering, Kyoto Institute of Technology.
Matsugasaki, Sakyo-ku, Kyoto 606-8585

(Received August 14, 2001)

A novel methodology for non-destructive and real-time determination of the gelation threshold for both chemical
and physical systems has been proposed. This method ie.. a time-resolved dynamic light scattering (TRDLS) measure-
ment, allows one not only to determine the gelation threshold but also to investigate critical dynamics near gelation
threshold, mechanism of gelation, and architecture of gelling cluster. The gelation threshold was found to be character-
ized by (1) the appearance of a speckle pattern in the scattering intensity, (2) a power-law in the intensity—time correla-
tion function (ICF). (3) a specific broadening of the distribution function. and (4) a noticeable suppression of the initial
amplitude of ICF. All of these features originate from some unique aspects of gels: nonergodicity, frozen inhomogene-
ities, and divergence of connectivity correlation. As an application of these concepts, we propose four methods for deter- !
mination of gelation threshold and examine their validity and usefulness for various types of gels: these include chemical /
gels of N-isopropylacrylamide, a gelling system of silica gel in a reaction batch, thermoreversible physical gels of /

\ poly(vinyl alcohol-Congo Red complex, and biological gels of gelatin and globular protein. /7
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ACF of PEI-PCL
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ACF Profile of DA 4115
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Scattering Profile

Homodyne Heterodyne
Exp [-2Dg?1] Exp [-Dg?1]

Homodyne and heterodyne
Scattering reveals inter
particular interactions !!!

_____________________________________________________

Homodyne:: g%(1)—1= Exp [-2Dg?1]

Partial Heterodyne:: g(t)—1= X? Exp [-2Dg?t]+2X(1-X) Exp [-Dg?7]



“1 Synthesis of
hyperbranched
polymer based
dispersion agent
(DA-4115)
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Gray to Green Conversion

Green Chemistry: Conducting chemical reactions and processes via
natural products without hazardous solvents and by products at
room temperature

Initial
0
Status 10% D o
h
D D years

Green Transformation Plan: Starting point is 20% with current settings, in 24 months our commitment is 50% and
following in 24 months 90% green transformation is projected
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Gray to Green Conversion

o Tin catalysis is required for PEI-PCL hyper-
branched DA. but organo-catalyst
replacement (in particular Citric Acid) can
even increase polymerization yield up to
90 %,

o PB—pinene cyclic ester have been replaced
with € caprolactone. Polymerization yield is
85%...
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Gray to Green Conversion

o Mass spectrum analysis confirmed that CA.

catalyzed polymerization has  perfect
Gaussian type of molecular weight
distribution.

Dynamic Light Scattering analysis revealed
that CA. catalyzed PEI-PCL has monomodal

delay profile




Gray to Green Conversion

o AFM analysis confirmed that CA catalyzed
PEI-Poly B— Pinene has 70-80 nm in size.

o Hyper-branched polymer based dispersion
agents are readily synthesized by using green
components.

o Total conversion could be increase up to .
30 % -

40
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